WASHINGTON, Nov. 1, 2017 - Scientists at DOE’s National Renewable Energy Laboratory (NREL) have advanced the thermoelectric performance of organic semiconductors, which may allow waste heat to be converted into electricity. The technology, based on carbon nanotube thin films, could be integrated into fabrics to serve as a small power source.
The scientists say the research demonstrates significant potential for semiconducting single-walled carbon nanotubes (SWCNTs) as the primary material for efficient thermoelectric generators, rather than being used as a component in a “composite” thermoelectric material containing, for example, carbon nanotubes and a polymer. The discovery is outlined in the new Energy & Environmental Science paper, Large n- and p-type thermoelectric power factors from doped semiconducting single-walled carbon nanotube thin films.
“There are some inherent advantages to doing things this way,” said Jeffrey Blackburn, a senior scientist in NREL’s Chemical and Materials Science and Technology center and co-lead author of the paper with Andrew Ferguson. These advantages include the promise of solution-processed semiconductors that are lightweight and flexible and inexpensive to manufacture. Other NREL authors are Bradley MacLeod, Rachelle Ihly, Zbyslaw Owczarczyk, and Katherine Hurst. The NREL authors also teamed with collaborators from the University of Denver and partners at International Thermodyne Inc., based in Charlotte, N.C.
Ferguson, also a senior scientist in the Chemical and Materials Science and Technology center, said the introduction of SWCNT into fabrics could serve an important function for “wearable” personal electronics. By capturing body heat and converting it into electricity, the semiconductor could power portable electronics or sensors embedded in clothing.
“We could actually fabricate the device from a single material,” Ferguson said. “In traditional thermoelectric materials you have to take one piece that’s p-type and one piece that’s n-type and then assemble those into a device.”
NREL is DOE's primary national laboratory for renewable energy and energy efficiency research and development.The research was funded by a cooperative research and development agreement with partner International Thermodyne. The fundamental research in SWCNT separation and optical/electrical characterization is supported by DOE’s Office of Science.